返回

第七百一十四章 拓扑

首页
关灯
护眼
字:
上一页 回目录 下一章 进书架
    第七百一十四章 拓扑 (第3/3页)

团的,所以这些绳子最后基本都会变成一团乱麻。一旦打结,从能量上来说就不太可能自动解开了。因此,绳子的结只会越来越多。

    绳子打结可不是一个简单的问题,数学家们为此还开创了一个拓扑学的分支学科,叫做纽结理论(knottheory),用来研究纽结的数学特性。

    纽结的数学定义是处在三维空间里的任何简单封闭曲线。利用这个定义,数学家们把纽结分成了几类:例如最简单的三叶结,绳子与自身只交叉3次;类似地,还有绳子与自身交叉4次形成的结,也就是八字结。数学家们已经找到了一组称为琼斯多项式(Jonespolynomials)的数字公式来定义每种纽结。然而,在很长的一段时间内,纽结理论都被认为是一种有些高深莫测的数学分支。

    2007年,物理学家道格拉斯?史密斯(DouglasSmith)和他当时的本科生道林?雷默(DorianRaymer)决定用真正的绳子亲手验证一下纽结理论的可行性。在实验中,他们把一条绳子放入盒子中,然后翻转盒子10秒。随后,雷默又改变绳子的长度、硬度、盒子大小、翻转速度等参数,进行了约3000次重复实验。

    结果显示,在大约50%的概率下,绳子会打一个结。而影响这一结果的主要因素之一是绳子的长度:长度小于1.5英尺(约46厘米)的绳子打结的情况较少;而随着长度增加,打结的几率也增大。然而这也有上限,当绳子的长度达到5英尺(约152厘米)时,它就会充斥整个盒子,在超过50%的情况下都不会打结。

    雷默和史密斯还利用数学家们发明的琼斯多项式将他们观察到的纽结进行了分类。在每次翻转之后,他们会拍下一张绳子的照片并把图像数据输入到一个电脑算法中对纽结进行分类。根据纽结理论,共有14种基本的纽结,它们都包含不多于7个交叉。雷默和史密斯在实验过程中观察到了全部14种纽结,并且还发现了更复杂的纽结,其中的一些带有多达11个交叉。

    研究者们最终建立了一个模型来解释他们的观察结果。总的来说,为了把绳子放进盒子里,就必须把绳子盘绕起来。此时绳子末端就会与绳子的某些节段平行。当盒子翻转时,绳子末端就有可能落到平行节段的中间而形成交叉。经过多次交叉后,绳子末端基本上就会缠绕在绳子的某个节段上,从而形成不同的纽结。

    其实看了半天我们最想知道的还是到底有没有办法能让电线不打结呢?研究者们在实验中观察到,如果使用较硬的绳子,打结的几率就会减小。可能这就是为什么苹果公司将最近几代笔记本电脑的电源线都选用了较硬的材料。这也解释了为什么又细又长的圣诞树彩灯总是一团糟,而又短又粗的接线板电线却总能平平整整。

    另外,较小的容器也能防止打结。实验发现,较长的绳子在较小的盒子中时,由于绳子有一种展开的趋势,所以它会紧贴盒子内壁,从而在盒子翻转时绳子末端不会掉到绳子中段缠绕起来。这是科学家们提出的脐带打结发生几率较低(约1%)的原因:子宫内的空间紧凑,不足以让脐带打结。

    最后,盒子翻转速度较高可以减少绳子打结几率。因为离心力的存在,绳子会紧贴盒子内壁,根本没有打结的可能。然而,这种方法似乎无法用于解决耳机线在包里打结的难题。也许你可以用翻筋斗的方式来行动,或者是买一些带有小口袋的衣服——我觉得应该还是后者比较现实吧。(未完待续。)

    
上一页 回目录 下一章 存书签