返回

第一百一十九章 均值不等式

首页
关灯
护眼
字:
上一页 回目录 下一页 进书架
    第一百一十九章 均值不等式 (第2/3页)

≥2ab(当且仅当a=b时取“=”号)。

    (2)对非负实数a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0。

    (3)对负实数a,b,有a+b<0<2√(a*b)。

    第二节课,老师讲了均值不等式的证明方式。方法很多:数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等。

    用数学归纳法证明,需要一个辅助结论。引理:设a≥0,b≥0,则(a+b)^n≥a^n+na^(n-1)b。注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0,a+b≥0。

    原题等价于:((a1+a2+…+an)/n)^n≥a1a2…an。当n=2时易证。设当n=k时命题成立,即((a1+a2+…+ak)/k)^k≥a1a2…ak。

    那么当n=k+1时,不妨设a(k+1)是a1,a2,…,a(k+1)中最大者,则ka(k+1)≥a1+a2+…+ak……

    这个数学老师虽然身体不行,但在学术上的造诣还是挺牛的,听了他讲课,王天以前一直觉得他是个窝囊教室,现在才知道他还是有两下子的。

    现在王天的智力超过130,又有过目不忘技能,虽然高中课程基本没学,但他在初中的基础比较好,一旦认真学习起来比别人不知道快多少。这个均值不等式很好理解,有些牛叉的小学生都能玩转,不过一节课下来,听得懂的只有少数人。不得不承认,无论在哪个方面,人和人都是有差距的。

    第三四节课是物理课,讲课的是一位三十多岁的男教师。

    现在高考的现状是各省自主出题,或者用全国统一试卷。然后按高低分录取,全国各大省份的高中二年级已经分文科和理科班。江淮市采取的是自主

    (本章未完,请点击下一页继续阅读)
上一页 回目录 下一页 存书签